CHEMISTRY 30

Balancing Redox Using Oxidation Numbers

Name: ___________________________ Date: ___________________________

Balance the following reactions using oxidation numbers and building half-reactions.

1. Zn(s) + SO₄²⁻(aq) → SO₂(g) + Zn²⁺(aq)

 Reduction: SO₄²⁻(aq) + 4H⁺⁺(aq) + 2e⁻ → SO₂(g) + 2H₂O(l)

 Oxidation: Zn(s) → Zn²⁺(aq) + 2e⁻

 NET SO₄²⁻(aq) + 4H⁺⁺(aq) + 2Zn(s) → SO₂(g) + 2H₂O(l) + 2Zn²⁺(aq)

2. Sn⁰(l) + 2NO₃⁻(aq) → SnO₂(s) + 2H₂O(l) + 2NO₂⁻(aq)

 Reduction: 4(e⁻ + NO₃⁻(aq)) + 2H₂O(l) → 2NO₂⁻(aq) + H₂O(l)

 Oxidation: 2H₂O(l) + Sn⁰(l) → SnO₂(s) + 4H⁺⁺(aq) + 4e⁻

 NET 4NO₃⁻(aq) + 4H₂O(l) + Sn⁰(l) → 4NO₂⁻(aq) + 2H₂O(l) + SnO₂(s)

3. KClO₃(s) + N₂H₄(s) → NO₂⁻(aq) + H₂O(l) + KCl(s)

 Reduction: 4ClO₃⁻(aq) + 6H⁺⁺(aq) + 6e⁻ → 4Cl⁻(aq) + 3H₂O(l)

 Oxidation: 2H₂O(l) + NaH(s) → 2NO₂⁻(aq) + 8H⁺⁺(aq) + 8e⁻

 NET 4ClO₃⁻(aq) + 2H₂O(l) + 6Na⁺⁺(aq) + 3NaH(s) → 4Cl⁻(aq) + 6H₂O(l) + 6NO₂⁻(aq) + 2H⁺⁺(aq)

4. Mn²⁺(aq) + 2BiO₃⁻(aq) → MnO₂(s) + 2Bi²⁺(aq)

 Reduction: (BiO₃⁻(aq) + 6H⁺⁺(aq) + 3e⁻ → Bi²⁺(aq) + 3H₂O(l))

 Oxidation: 2H₂O(l) + Mn²⁺(aq) → MnO₂(s) + 8H⁺⁺(aq) + 5e⁻

 NET 5BiO₃⁻(aq) + 30H⁺⁺(aq) + 2Mn²⁺(aq) → 5Bi²⁺(aq) + 10H₂O(l) + 2MnO₂(s)