CHEMISTRY 30
Carboxylic acid and Esters

1. Draw a structural formula for each of the following compounds.
 a) octanoic acid
 b) benzoic acid
 c) ethanoic (acetic) acid

 ![Octanoic Acid](image)
 ![Benzoic Acid](image)
 ![Ethanoic Acid](image)

2. Write IUPAC names for the following.
 a) H-C-OH
 b) HOOC-CH₃-CH₂-CH₂-CH₃
 c) CH₃-CH₂-CH₂-CH₂-CH₂-COOH

 Methanoic acid
 Pentanoic acid
 Hexanoic acid

3. Draw condensed structural formula equations and write the IUPAC name for the ester formed.

 ![Condensed Structural Equation](image)

 Methanoic acid + Ethanol → Methyl propanoate + Water

4. Write a condensed structural formula equation to illustrate the synthesis of each of the following esters from an alcohol and an acid. Refer to table 2 and identify the odor of each ester formed.
 a) ethyl methanoate

 ![Synthesis Equation](image)

 Methanoic acid + Ethanol → Ethyl methanoate + Water

 b) ethyl benzoate

 ![Synthesis Equation](image)

 Benzoic acid + Ethanol → Ethyl benzoate + Water
5. Name each of the following esters, and the acids and alcohols from which they could be prepared.

a) \(\text{CH}_3\text{CH}_2\text{COOCH}_2\text{CH}_3 \)

Ethyl propanoate (from propanoic acid and ethanol)

b) \(\text{CH}_3\text{CH}_2\text{CH}_2\text{COOCH}_3 \)

Methyl butanoate (from butanoic acid and methanol)

c) \(\text{HCOOCH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \)

Butyl methanoate (from methanoic acid and butan-1-ol)

d) \(\text{CH}_3\text{COOCH}_2\text{CH}_2\text{CH}_3 \)

Propyl ethanoate (from ethanoic acid and propan-1-ol)
6. Many organic compounds have more than one functional group in a molecule. **Circle and label** the functional groups for an alcohol, a carboxylic acid, and/or an ester.

![Functional Groups](image)

7. **Classify** each reaction and **write** a complete condensed structural formula equation for each of the following organic reactions. **Name** both the reactants and products.

 a) \(\text{C}_2\text{H}_6 + \text{Br}_2 \rightarrow \text{C}_2\text{H}_5\text{Br} + \text{HBr} \)

 ![Reaction a](image)
 Substitution

 b) \(\text{C}_3\text{H}_6 + \text{Cl}_2 \rightarrow \text{C}_3\text{H}_5\text{Cl}_2 \)

 ![Reaction b](image)
 Addition

 c) \(\text{C}_6\text{H}_6 + \text{I}_2 \rightarrow \text{C}_6\text{H}_5\text{I} + \text{HI} \)

 ![Reaction c](image)
 Substitution
d) \[\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Cl} + \text{OH}^- \rightarrow \text{CH}_3\text{CH}_2\text{CHCH}_2 + \text{H}_2\text{O} + \text{Cl}^- \]

l-chlorobutane

\[\text{H} - \text{C} - \text{C} - \text{C} - \text{Cl} + \text{OH}^- \rightarrow \text{H} - \text{C} - \text{C} - \text{C} = \text{C} - \text{H} + \text{H}_2\text{O} + \text{Cl}^- \]

but-1-ene

water

chloride ion

\[\text{C}_3\text{H}_7\text{COOH} + \text{CH}_3\text{OH} \rightarrow \text{C}_3\text{H}_7\text{COOCH}_3 + \text{H}_2\text{O} \]

\[\text{H} - \text{C} - \text{C} - \text{C} - \text{O} + \text{H} - \text{C} - \text{C} - \text{O} \rightarrow \text{H} - \text{C} - \text{C} - \text{O} - \text{C} - \text{H} + \text{H}_2\text{O} \]

butanoic acid

methanol

methyl butanoate

water

\[\text{C}_2\text{H}_5\text{OH} \rightarrow \text{C}_2\text{H}_4 + \text{H}_2\text{O} \]

\[\text{H} - \text{C} - \text{C} - \text{OH} \rightarrow \text{H} - \text{C} - \text{C} - \text{H} + \text{H}_2\text{O} \]

either

water

elimination

g) \[\text{C}_6\text{H}_5\text{CH}_3 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \]

\[\text{H} - \text{C} - \text{H} \]

oxygen

carbon dioxide

water vapor

methanol